6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (400 Volts Peak) The MOC3041, MOC3042 and MOC3043 devices consist of gallium arsenide infrared emitting diodes optically coupled to a monolithic silicon detector performing the function of a Zero Voltage Crossing bilateral triac driver. They are designed for use with a triac in the interface of logic systems to equipment powered from 115 Vac lines, such as solid–state relays, industrial controls, motors, solenoids and consumer appliances, etc. - Simplifies Logic Control of 115 Vac Power - · Zero Voltage Crossing - dv/dt of 2000 V/μs Typical, 1000 V/μs Guaranteed - To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option. #### Recommended for 115/240 Vac(rms) Applications: - Solenoid/Valve Controls - · Lighting Controls - Static Power Switches Storage Temperature Range(2) Soldering Temperature (10 s) AC Motor Drives - Temperature Controls - E.M. Contactors - AC Motor Starters - Solid State Relays -40 to +150 Tsta T_L °C °C #### **MAXIMUM RATINGS** (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | | |---|--------|-------------|-------------|--| | INFRARED EMITTING DIODE | | | | | | Reverse Voltage | VR | 6 | Volts | | | Forward Current — Continuous | lF | 60 | mA | | | Total Power Dissipation @ T _A = 25°C Negligible Power in Output Driver Derate above 25°C | PD | 120
1.41 | mW
mW/°C | | | | | 1.41 | IIIVV/ C | | | OUTPUT DRIVER | | | | | | Off–State Output Terminal Voltage | VDRM | 400 | Volts | | | Peak Repetitive Surge Current (PW = 100 μs, 120 pps) | ITSM | 1 | А | | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | PD | 150
1.76 | mW
mW/°C | | | TOTAL DEVICE | | | | | | Isolation Surge Voltage(1) (Peak ac Voltage, 60 Hz, 1 Second Duration) | VISO | 7500 | Vac(pk) | | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | PD | 250
2.94 | mW
mW/°C | | | Junction Temperature Range | TJ | -40 to +100 | °C | | | Ambient Operating Temperature Range(2) | TA | -40 to +85 | °C | | ^{1.} Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. ## MOC3041 MOC3042 MOC3043 6. MAIN TERMINAL ### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|-------------------|-------------|-------------|---------------|---------| | INPUT LED | | | | | | | Reverse Leakage Current (V _R = 6 V) | lR | _ | 0.05 | 100 | μА | | Forward Voltage (I _F = 30 mA) | VF | _ | 1.3 | 1.5 | Volts | | OUTPUT DETECTOR (I _F = 0 unless otherwise noted) | | • | | • | • | | Leakage with LED Off, Either Direction (Rated $V_{DRM}^{(1)}$) | IDRM1 | _ | 2 | 100 | nA | | Peak On–State Voltage, Either Direction (I _{TM} = 100 mA Peak) | V _{TM} | _ | 1.8 | 3 | Volts | | Critical Rate of Rise of Off–State Voltage(3) | dv/dt | 1000 | 2000 | _ | V/μs | | COUPLED | | | | | | | LED Trigger Current, Current Required to Latch Output (Main Terminal Voltage = 3 V(2)) MOC3041 MOC3042 MOC3043 | lFT | _
_
_ | _
_
_ | 15
10
5 | mA | | Holding Current, Either Direction | lн | _ | 250 | _ | μΑ | | Isolation Voltage (f = 60 Hz, t = 1 sec) | V _{ISO} | 7500 | _ | _ | Vac(pk) | | ZERO CROSSING | | • | | • | • | | Inhibit Voltage (IF = Rated IFT, MT1–MT2 Voltage above which device will not trigger.) | VIH | _ | 5 | 20 | Volts | | Leakage in Inhibited State (IF = Rated IFT, Rated V _{DRM} , Off State) | I _{DRM2} | | _ | 500 | μА | - 1. Test voltage must be applied within dv/dt rating. - 2. All devices are guaranteed to trigger at an I_F value less than or equal to max I_FT. Therefore, recommended operating I_F lies between I_FT (15 mA for MOC3041, 10 mA for MOC3042, 5 mA for MOC3043) and absolute max I_F (60 mA). - 3. This is static dv/dt. See Figure 7 for test circuit. Commutating dv/dt is a function of the load–driving thyristor(s) only. # TYPICAL ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ Figure 2. Trigger Current versus Temperature Figure 3. IDRM1, Peak Blocking Current versus Temperature Figure 4. IDRM2, Leakage in Inhibit State versus Temperature Figure 5. Trigger Current versus Temperature Figure 6. LED Current Required to Trigger versus LED Pulse Width - The mercury wetted relay provides a high speed repeated pulse to the D.U.T. - 2. 100x scope probes are used, to allow high speeds and voltages. - 3. The worst–case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded. Figure 7. Static dv/dt Test Circuit * For highly inductive loads (power factor < 0.5), change this value to 360 ohms. Typical circuit for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line. R_{in} is calculated so that IF is equal to the rated IFT of the part, 5 mA for the MOC3043, 10 mA for the MOC3042, or 15 mA for the MOC3041. The 39 ohm resistor and 0.01 μF capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load used. Figure 8. Hot-Line Switching Application Circuit Figure 9. Inverse-Parallel SCR Driver Circuit #### **PACKAGE DIMENSIONS** #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### **LIFE SUPPORT POLICY** FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.