

LM831 Low Voltage Audio Power Amplifier

General Description

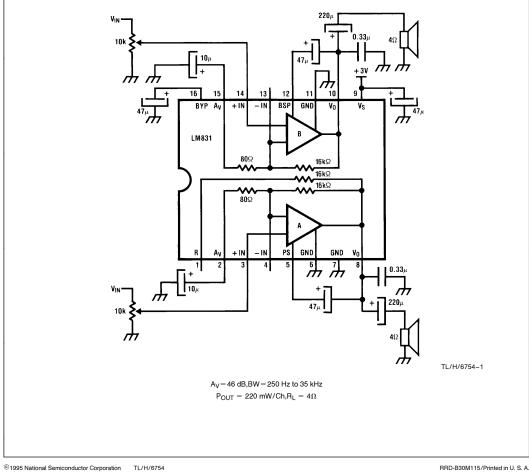
The LM831 is a dual audio power amplifier optimized for very low voltage operation. The LM831 has two independent amplifiers, giving stereo or higher power bridge (BTL) operation from two- or three-cell power supplies.

The LM831 uses a patented compensation technique to reduce high-frequency radiation for optimum performance in AM radio applications. This compensation also results in lower distortion and less wide-band noise.

The input is direct-coupled to the LM831, eliminating the usual coupling capacitor. Voltage gain is adjustable with a single resistor.

Features

- Low voltage operation, 1.8V to 6.0V
- High power, 440 mW, 8Ω, BTL, 3V
- Low AM radiation
- Low noise
- re- Low THD


Applications

- Portable tape recorders
- Portable radios
- Headphone stereo
- Portable speakers

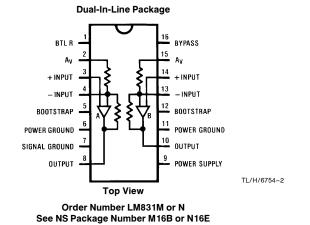
Typical Application

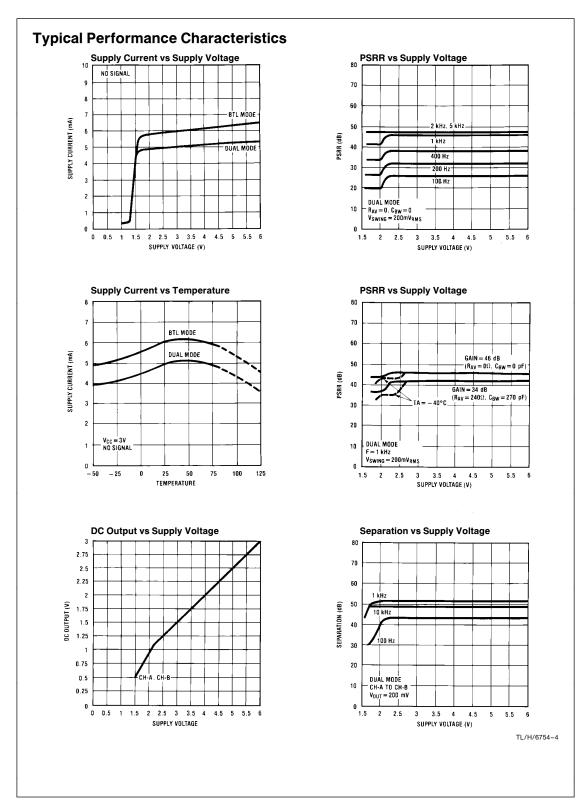
Dual Amplifier with Minimum Parts

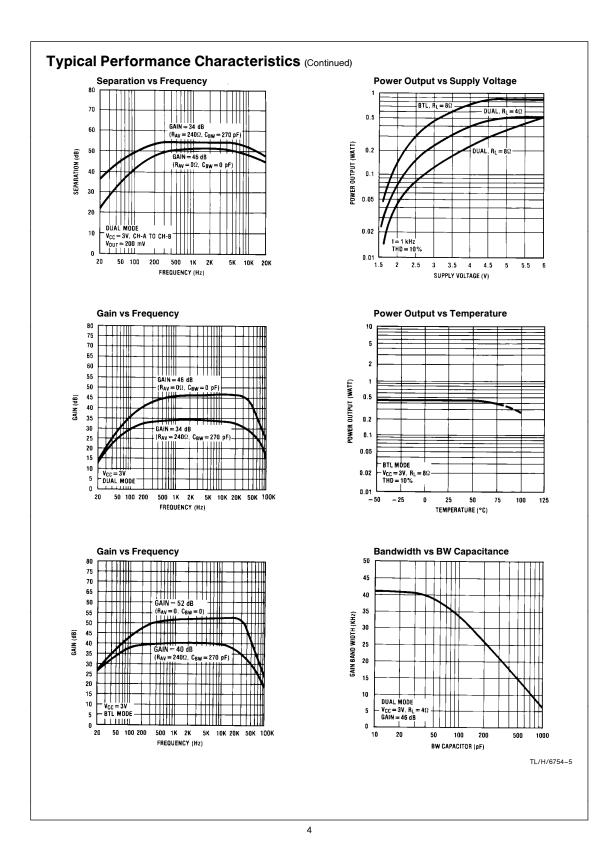
LM831 Low Voltage Audio Power Amplifier

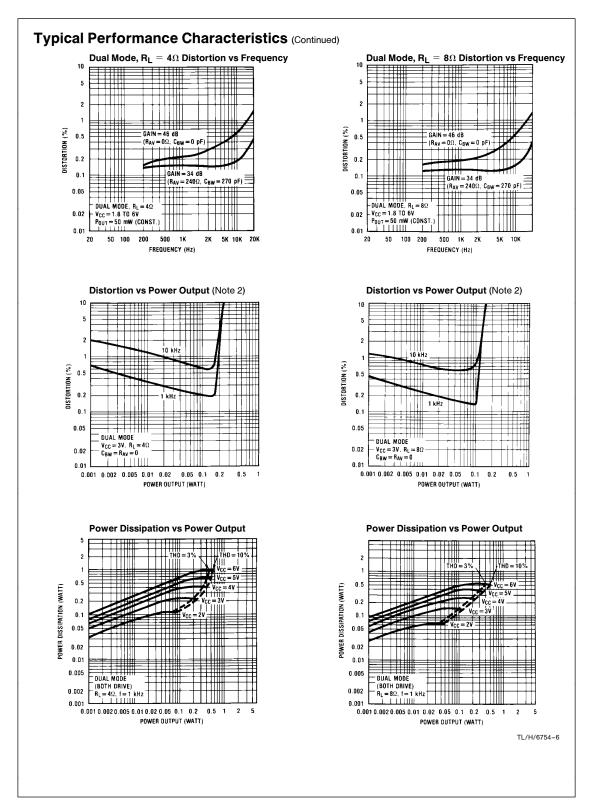
December 1994

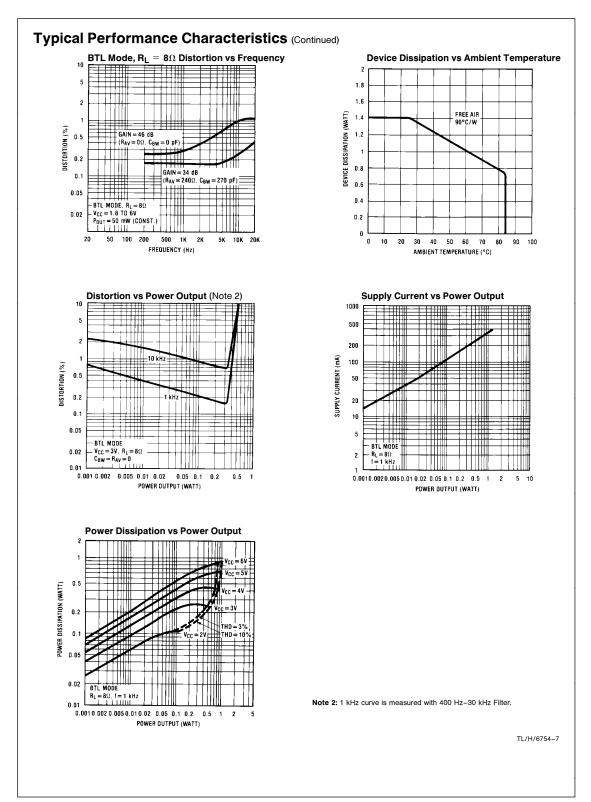
Absolute Maximum Rat	tings		
If Military/Aerospace specified de please contact the National Se Office/Distributors for availability a	miconductor Sales	Storage Temperature, T _{stg} Junction Temperature, T _j Lead Temp. (Soldering, 10 sec.), T _l	−65°C to +150°C +150°C +260°C
Supply Voltage, V _S	7.5V	Thermal Resistance	
Input Voltage, V _{IN}	\pm 0.4V	$\theta_{\rm JC}$ (DIP)	27°C/W
Power Dissipation (Note 1), PD	1.3W (M Package)	θ_{JA} (DIP)	75°C/W
	1.4W (N Package)	$\theta_{\rm JC}$ (SO Package)	20°C/W
Operating Temperature (Note 1), $\mathrm{T}_{\mathrm{opr}}$	-40°C to +85°C	θ_{JA} (SO Package)	95°C/W

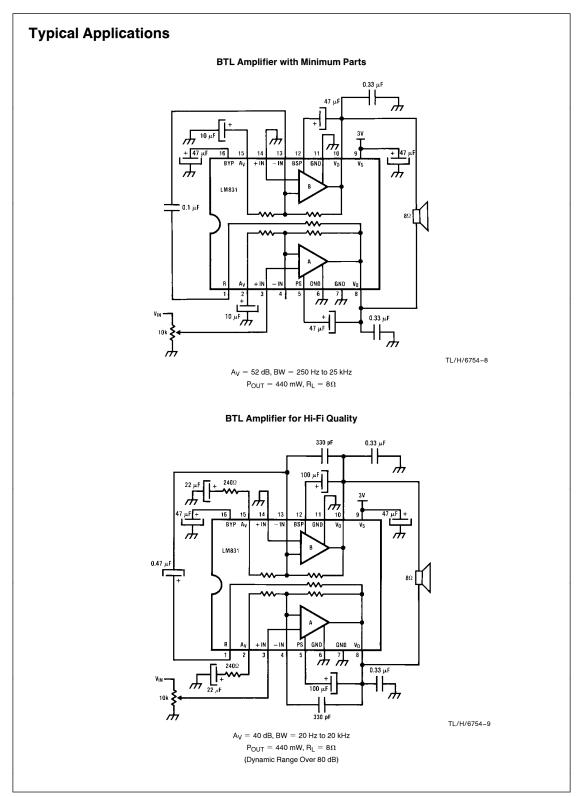

Electrical Characteristics

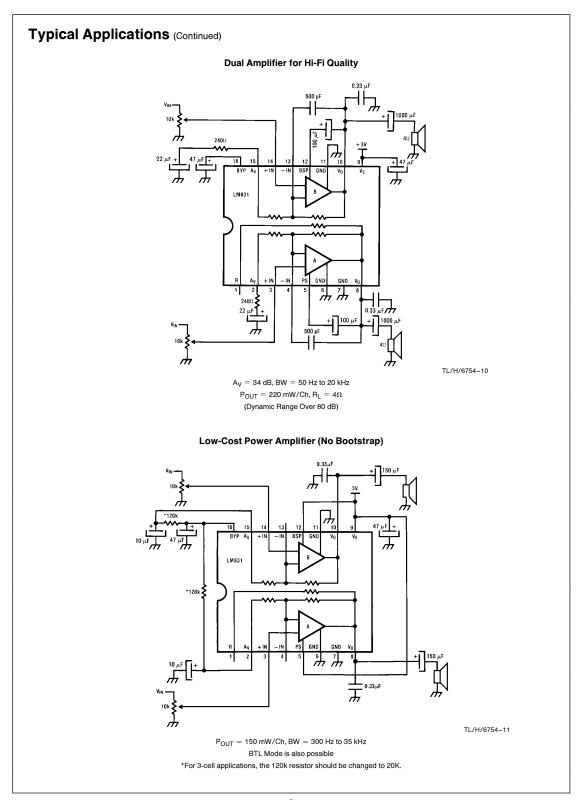

Unless otherwise specified, T_A = 25°C, V_S = 3V, f = 1 kHz, test circuit is dual or BTL amplifier with minimum parts.


Symbol	Parameter	Conditions	Тур	Tested Limit	Unit (Limit)
V _S	Operating Voltage		3 3	1.8 6	V(Min) V(Max)
IQ	Supply Current	$V_{IN} = 0$, Dual Mode $V_{IN} = 0$, BTL Mode	5 6	10 15	mA (Max) mA (Max)
V _{OS}	Output DC Offset	V _{IN} = 0, BTL Mode	10	50	mV (Max)
R _{IN}	Input Resistance		25	15 35	k (Min) k (Max)
A _V	Voltage Gain	$V_{IN} = 2.25 \text{ mV}_{rms}$, f = 1 kHz, Dual Mode	46	44 48	dB (Min) dB (Max)
PSRR	Supply Rejection	$V_{S} = 3V + 200 \text{ mV}_{rms} @ f = 1 \text{ kHz}$	46	30	dB (Min)
P _{OD}	Power Out	$V_S = 3V, R_L = 4\Omega,$ 10% THD, Dual Mode	220	150	mW (Min)
P _{ODL}	Power Out Low, V _S	$V_{S} = 1.8V, R_{L} = 4\Omega,$ 10% THD, Dual Mode	45	10	mW (Min)
P _{OB}	Power Out	$V_{S} = 3V, R_{L} = 8\Omega,$ 10% THD, BTL Mode	440	300	mW (Min)
P _{OBL}	Power Out Low, V _S	$V_{S} = 1.8V, R_{L} = 8\Omega,$ 10% THD, BTL Mode	90	20	mW (Min)
Sep	Channel Separation	Referenced to $V_0 = 200 \text{ mV}_{rms}$	52	40	dB (Min)
IB	Input Bias Current		1	2	μΑ (Max)
E _{n0}	Output Noise	Wide Band (250 \sim 35 kHz)	250	500	μV (Max)
THD	Distortion	$V_{S} = 3V, P_{O} = 50 \text{ mW},$ f = 1 kHz, Dual	0.25	1	% (Max)


Note 1: For operation in ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 98°C/W junction to ambient for the M package or 90°C/W junction to ambient for the N package.

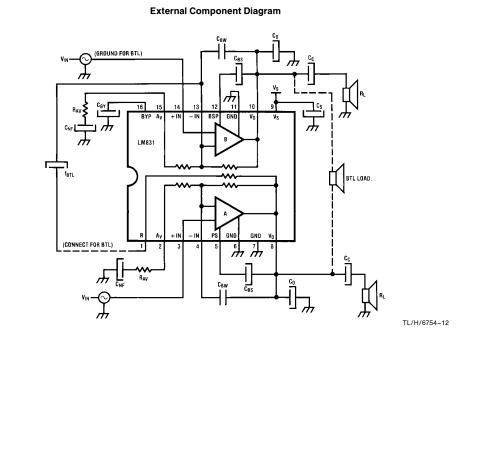

Connection Diagram

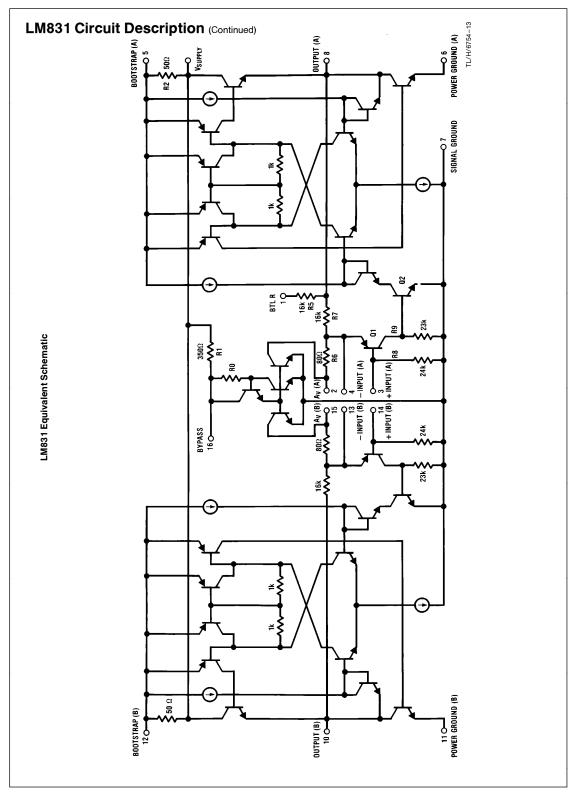




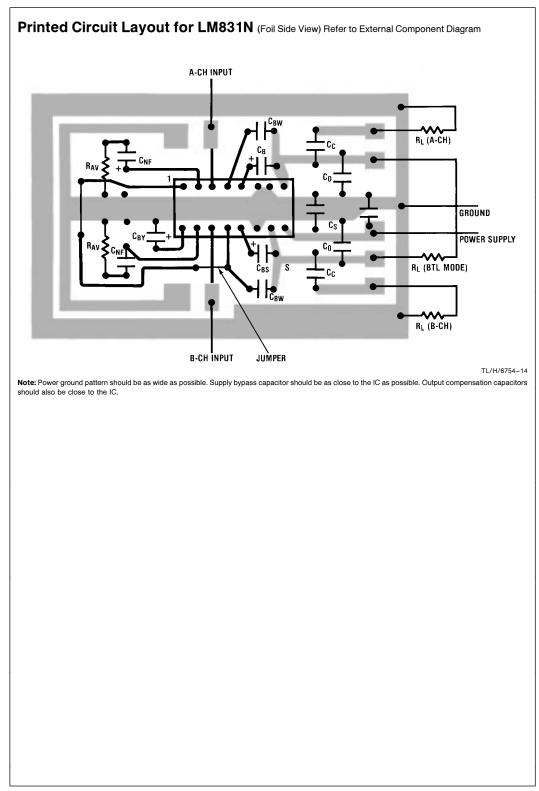
LM831 Circuit Description Refer to the external component diagram and equivalent schematic.

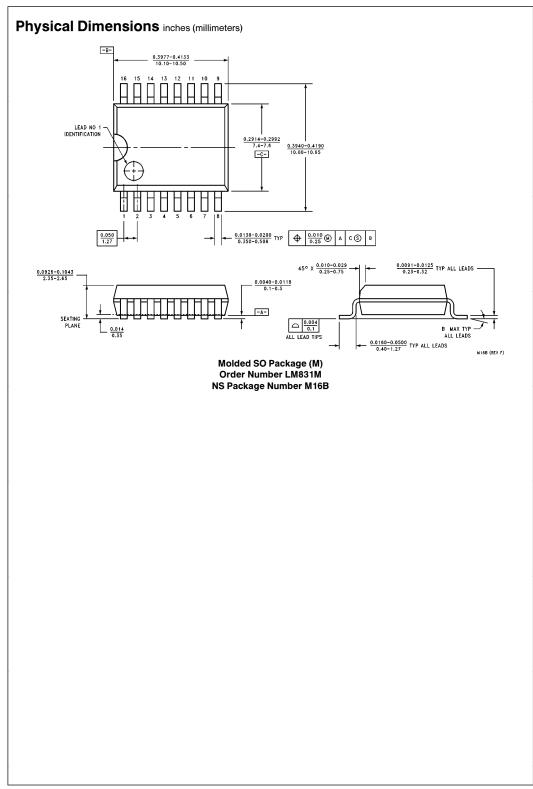
The power supply is applied to Pin 9 and is filtered by resistor R₁ and capacitor C_{BY} on Pin 16. This filtered voltage at Pin 16 is used to bias all of the LM831 circuits except the power output stage. Resistor R₀ generates a biasing current that sets the output DC voltage for optimum output power for any given supply voltage.

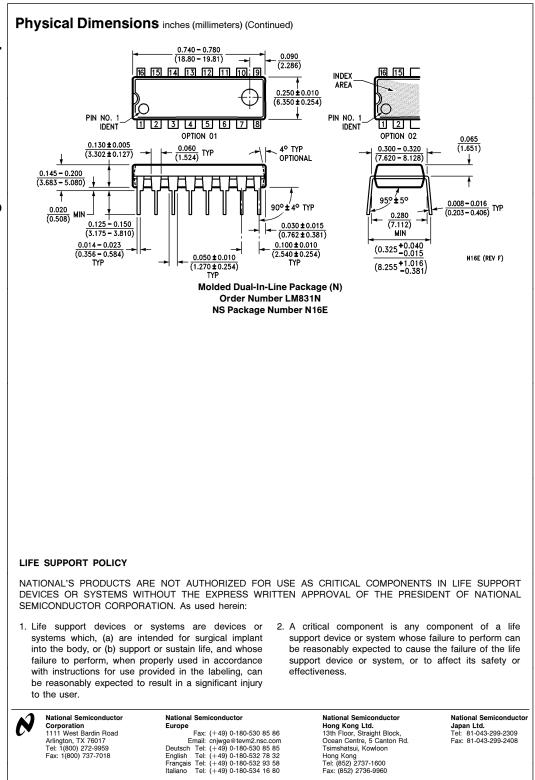

The capacitor $C_{\mbox{NF}}$ on Pin 2 provides unity DC gain for maximum DC accuracy.


 Q_2 provides voltage gain and the rest of the devices buffer the output load from $Q_2{\,}{}^{\prime}{}^{\prime}{}^{\prime}$ collector.

Bootstrapping of Pin 5 by C_{BS} allows maximum output swing and improved supply rejection.


R₅ is provided for bridge (BTL) operation.


Feedback is provided to the input transistor Q_1 emitter by R_6 and $\mathsf{R}_7.$



		Comments		Min	Мах	
Co	Required to stabilize output stage.			0.33 μF	1 μF	
C _c	Output coupling the frequency r	g capacitors for Dual Mode. Se esponse. $f_L = \frac{1}{2\pi C_C R_I}$	100 μF	10,000 μF		
C _{BS}	Bootstrap capa Recommended	citors. Sets a low-frequency p	22 μF or (short Pins 4 & 12 to 9)	470 μF		
CS	Supply bypass. reducing supply	Larger values improve low-ba	47 μF	10,000 μF		
C _{BY}		ly for improved low-voltage op	47 μF	470 μF		
C _{NF}	In BTL Mode, C	equency response. Also affects turn-on delay. $f_{L} = \frac{1}{2\pi \cdot C_{NF} \cdot (R_{AV} + 80)}$ $f_{L} = \frac{1}{2\pi \cdot C_{NF} \cdot (R_{AV} + 80)}$ $f_{L} = \frac{1}{2\pi \cdot C_{NF} \cdot (R_{AV} + 80)}$ $f_{L} = \frac{1}{2\pi \cdot C_{NF} \cdot (R_{AV} + 80)}$ $f_{L} = \frac{1}{2\pi \cdot C_{NF} \cdot (R_{AV} + 80)}$				
C _{BTL}	the inverting in	e Bridge Mode. Connects the d out of the other through an inte in one-half the frequency resp $f_L = \frac{1}{2\pi \bullet C_{BTL} \bullet 16}$	ernal resistor. Sets a low- oonse.	0.1 μF 1 μF		
C _{BW}	Improves clipping waveform and sets the high-frequency bandwidth. Works with an internal 16k resistor. (This equation applies for $R_{AV} \neq 0$. For 46 dB application, see BW–C _{BW} curve.) $f_{H} = \frac{1}{2\pi^{\bullet}C_{BW}^{\bullet}16k}$			See table below		
R _{AV}		sed to reduce the gain and improve the distortion and signal to noise. If is is desired, C_{BW} must also be used.			See table below	
			1	C		
Typical A _V		R _{AV}	Min	C _{BW} Max		
46	dB	Short	Open	4700 pF		
40	dB	82	100 pF	4700 pF		
34	dB	240	270 pF	4700 pF		
28 dB		560	500 pF	4700 pF		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.