| | Heat Sink for Xeon Series | | | | | | | | | |------|---------------------------|--|---------------------------|-------|---|--|--|--|--| | Item | Part Number | Description | Dimension | Photo | Application | | | | | | 1W | OSMCPCB8060B | Aluminum metal-base copper-clad laminate PCB Design for Xeon 1 Power Series LED Base metal is 1.5mm Aluminum With NTCD Thermally Conductive Dielectric Copper Circuit Foil is 35 μ m(1oz) Surface Finish is Black Solder Mask, Pb-free HASL solder pads (RoHS compliant) | Unit:mm Tolerance:±0.30mm | | Used for Xeon 1 Power Series, eg: OSW4XME1C1E | | | | | | 3W | OSMCPCB8060A | Aluminum metal-base copper-clad laminate PCB Design for Xeon 3 Power Series LED Base metal is 1.5mm Aluminum With HTCD Thermally Conductive Dielectric to suitable high power LED Copper Circuit Foil is 35 μ m(1oz) Surface Finish is White Solder Mask, Pb-free HASL solder pads (RoHS compliant) | Unit:mm Tolerance:±0.30mm | | Used for Xeon 3 Power Series, eg: OSW4XME1C1E | | | | | | Item | Part Number | Description | Dimension | Photo | Application | |------|--------------|--|--|--|---| | RGB | OSMCPCB5050A | Aluminum metal-base copper-clad laminate PCB Design for Tops 0.5 Power Series LED Base metal is 1.5mm Aluminum With HTCD Thermally Conductive Dielectric to suitable high power LED Copper Circuit Foil is 35 μ m(1oz) Surface Finish is White Solder Mask, Pb-free HASL solder pads (RoHS compliant) | Unit:mm Tolerance:±0.30mm | | Used for Tops 0.5 Power Series, eg: OSTCXBTHC1E | | RGB | OSMCPCB9218A | Aluminum metal-base copper-clad laminate PCB Design for Commercial 1 Power Series LED Base metal is 1.5mm Aluminum With HTCD Thermally Conductive Dielectric to suitable high power LED Copper Circuit Foil is 35 μ m(1oz) Surface Finish is White Solder Mask, Pb-free HASL solder pads (RoHS compliant) | John Market Mark | E STATE OF THE STA | Used for Commercial 1 Power Series, eg: OSTCXBC1C1E | ## **Appendix** ## **Data and information for MCPCB** | <u>Items</u> | <u>Unit</u> | <u>Reference</u> | |--|----------------------|------------------| | Thermal Conductivity | W/mK | 0.8W/mK | | Dielectric thickness | μ m | 100 | | Breakdown voltage | kV(DC) | > 3kV | | Insulation resistance | Ω | 10 ⁵ | | Maximum Working Temperature | $^{\circ}\mathbb{C}$ | 130 | | Peel Strength | N/mm | > 1.4 | | Blistering after heat shock within 1 minutes | $^{\circ}\mathbb{C}$ | <260 | | Copper thickness | μ m | 35 | | Base metal plate | - | Aluminum | | Base metal thickness | mm | 1.5 |