
MORNSUN®

A S-1W & B LS-1W Series

1W, FIXED INPUT, ISOLATED & UNREGULATED DUAL/SINGLE OUTPUT DC-DC CONVERTER

MODEL SELECTION

PRODUCT FEATURES

- High Efficiency up to 84%
- 1KVDC Isolation
- SIP Package
- Internal SMD Construction
- Temperature Range: -40°C ~ +85°C
- No Heat sink Required
- No External Component Required
- Industry Standard Pinout
- RoHS Compliance

APPLICATIONS

The A_S-1W & B_LS-1W series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- Where isolation is necessary between input and output (isolation voltage ≤1000VDC);
- Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

	Input	Output	Output	Current	Input (Current	Reflected	Mov	Efficiency	
Model Number	Voltage(VDC)	Voltage	(mA)		(mA)(typ.)		Ripple	Max. Capacitive	(%, typ.)	Approval
	Nominal (Range)	(VDC)	Max.	Min.	@Max. Load	@No Load		Load(µF)	@Max. Load	7,66.013.
B0303LS-1W	3.3	3.3	303	31	417	40	220	72		
B0305LS-1W	(3.0-3.6)	5	200	20	392	42	14	220	74	
A0505S-1W		±5	±100	±10	273				72	UL
A0509S-1W		±9	±56	±6	268				77	UL
A0512S-1W		±12	±42	±5	253	33	20	100	79	UL
A0515S-1W		±15	±33	±4	229				80	UL
A0524S-1W		±24	±21	±3	241				82	
B0503LS-1W		3.3	303	31	271		21		72	
B0505LS-1W	5 (4.5-5.5)	5	200	20	273	35			70	UL CE
B0506LS-1W	(, , , ,	6	167	16	267				70	
B0507LS-1W		7.2	139	14	264			220	72	
B0509LS-1W		9	111	12	252	35	21	220	78	UL CE
B0512LS-1W		12	83	9	250				78	UL CE
B0515LS-1W		15	67	7	248				80	UL CE
B0524LS-1W		24	42	5	237				81	
A1205S-1W		±5	±100	±10	114				72	UL
A1209S-1W		±9	±56	±6	109	17	15	100	78	UL
A1212S-1W	-	±12	±42	±5	105	17	15		79	UL
A1215S-1W		±15	±33	±4	105				78	UL
B1203LS-1W	12 (10.8-13.2)	3.3	303	31	112				74	
B1205LS-1W	(1313 131 <u>4</u>)	5	200	20	116				71	UL CE
B1209LS-1W	•	9	111	12	107	14	22	220	76	UL CE
B1212LS-1W		12	83	9	101				78	UL CE
B1215LS-1W		15	67	7	101				79	UL CE

Model Number	Input Voltage(VDC)	Output Voltage	Output (m	Current A)	(mA)		Reflected Ripple	Max. Capacitive	Efficiency (%, typ.)	Approval
	Nominal (Range)	(VDC)	Max.	Min.	@Max. Load	@No Load	Current (mA,typ.)	Load(µF)	@Max. Load	
B1224LS-1W	12(10.8-13.2)	24	42	5	97	14	22	220	84	
A1505S-1W		±5	±100	±10	95				72	
A1512S-1W		±12	±42	±5	84	15	22	100	76	
A1515S-1W	15	±15	±33	±4	88				79	
B1505LS-1W	(13.5-16.5)	5	200	20	94				72	
B1512LS-1W		12	83	9	85	14	24	220	76	
B1515LS-1W		15	67	7	84				75	
A2405S-1W		±5	±100	±10	56	8	43	100	73	UL
A2409S-1W		±9	±56	±6	53				79	UL
A2412S-1W		±12	±42	±5	52				80	UL
A2415S-1W		±15	±33	±4	51				80	UL
A2424S-1W	24	±24	±21	±3	51				81	
B2405LS-1W	(21.6-26.4)	5	200	20	56				73	UL CE
B2409LS-1W		9	111	12	52			220	78	UL CE
B2412LS-1W		12	83	9	51	7	53		78	UL CE
B2415LS-1W		15	67	7	50				79	UL CE
B2424LS-1W		24	42	4	50				78	
Note: The A_S-W25/E	B_LS-W25 series also	are availab	le in our co	mpany.						

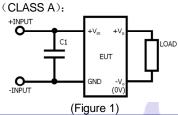
INTPUT SPECIFICATIONS										
Item	Test Conditions	Min.	Тур.	Max.	Units					
	3.3VDC Input Models	-0.7		5						
	5VDC Input Models	-0.7		9						
Input Surge Voltage (1 sec. max.)	12VDC Input Models	-0.7		18	VDC					
(* 200**********************************	15VDC Input Models	-0.7		21						
	24VDC Input Models	-0.7		30						
Reverse Polarity Input Current*				0.4	Α					
Internal Power Dissipation*				0.45	W					
Input Filter	C Filter									

Note: "If the product reverse did not seek to limit current or work does not limit the maximum power, may result in injury or permanent damage, testing is not recommended.

Item	Test Conditions		Min.	Тур.	Max.	Units
Output Power			0.1		1	W
Output Voltage Accuracy				See tolerar	nce envelope graph	
Output Voltage Balance	Dual Output, Balance	ed Loads		±0.5	±1	
Line Regulation	For Vin change of ±1	For Vin change of ±1%			±1.2	
		(3.3V output)		12	20	% - %
	10% to 100% load	(5V/6V/7.2V output)		10.5	15	
Load Dagulation		(9V output)		8.3	15	
Load Regulation		(12V output)		6.8	15	
		(15V output)		6.3	15	
		(24V output)		5	15	
Temperature Drift	100% full load				±0.03	%/°C
		(AXXXXS-1W)		50	75	mVp-p
Dinala 9 Naina*	20ML In Donadovidah	(AXX24S-1W)		100	150	
Ripple & Noise*	20MHz Bandwidth	(BXXXXLS-1W)		75	100	
		(BXX24LS-1W)		100	150	
Short Circuit Protection**		•			1	S

*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes. Note: Dual output models unbalanced load: ±5%.

**Supply voltage must be discontinued at the end of short circuit duration.


COMMON SPECIFICATIONS									
Item	Test Conditions		Min.	Тур.	Max.	Units			
Isolation Voltage	Tested for 1 minu	Tested for 1 minute and 1mA max				VDC			
Isolation Resistance	Test at 500VDC	Test at 500VDC				ΜΩ			
Isolation Capacitance	Input/Output,	24VDC Input/Output Models		100		- pF			
Isolation Capacitance	100KHz/1V	Other Models		30					
Switching Frequency	Full load, nominal	l input		100		KHz			
MTBF	MIL-HDBK-217F	MIL-HDBK-217F@25℃				K hours			
Case Material				Pla	stic(UL94-V0)				
Weight				2.1		g			

ENVIRONMENTAL SPECIFICATIONS								
Item	Test Conditions	Min.	Тур.	Max.	Units			
Storage Humidity				95	%			
Operating Temperature	Power derating (above 85℃)	-40		85				
Storage Temperature		-55		125	°C			
Temp. rise at full load			25		C			
Lead Temperature	1.5mm from case for 10 seconds			300				
Cooling			Free air convection					

EMC SPECIFICATIONS							
EMI	CE		CISPR22/EN55022 CLASS A (External Circuit Refer to Figure1)				
EMS	ESD	AxxxxS-1W Series	IEC/EN61000-4-2 Contact ±6KV perf. Criteria B				
EWS		BxxxxLS-1W Series	IEC/EN61000-4-2 Contact ±8KV perf. Criteria B				

EMC RECOMMENDED CIRCUIT

EMI Recommended External Circuit

A_S-1W Series

Recommended external circuit parameters:

Vin: 5V

C1: 4.7µF/50V 1210

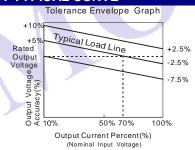
Vin: 24V

C1: 1µF/50V 1210

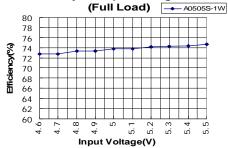
Remarks: Product bare input of 12V、15V can be

tested by the CLASS A.

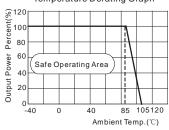
B_LS-1W Series

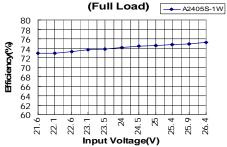

Recommended external circuit parameters:

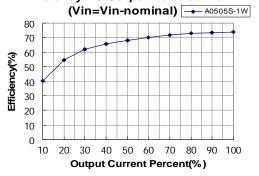
Vin: 3.3V

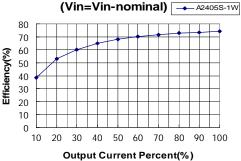

C1: $4.7\mu F/50V$ 1210 Vin: 5V/12V/15V/24VC1: $1\mu F/50V$ 1210

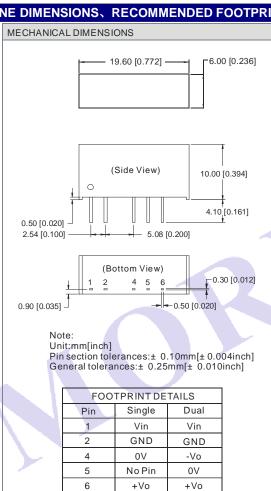
Remarks: Product bare input of 3.3V \ 5V \ 12V can be tested by the CLASS A, increase the capacitor margin increase.

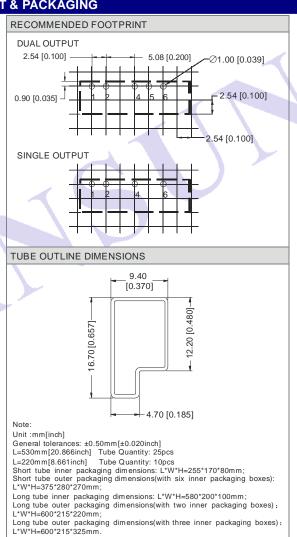

PRODUCT TYPICAL CURVE


Efficiency VS Input Voltage curve


Temperature Derating Graph

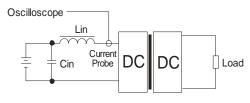

Efficiency VS Input Voltage curve


Efficiency VS Output Load curve



Efficiency VS Output Load curve

OUTLINE DIMENSIONS、RECOMMENDED FOOTPRINT & PACKAGING



TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin and Cin to simulate source impedance.

Lin(4.7µH) Cin(220 μ F, ESR < 1.0 Ω at 100 KHz)

DESIGN & APPLY CONSIDERATIONS

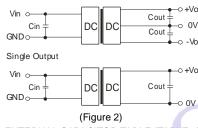
1) Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load *could not be less than 10% of the full load.* If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power (A_S -W25/B_LS-W25 series).

2) Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

Input Fuse Selection Guide

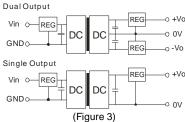

3.3VDC Input Models	500mA slow-Blow Type	15VDC Input Models	100mA slow-Blow Type
5VDC Input Models	500mA slow-Blow Type	24VDC Input Models	100mA slow-Blow Type
12VDC Input Models	200mA slow-Blow Type		

3) Recommended circuit

If you want to further decrease the input/output ripple, an capacitor filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 2).

It should also be noted that the capacitance of filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor sees (Table 1).

Dual Output


EXTERNAL CAPACITOR TABLE (TABLE 1)

Vin	Cin	Single	Cout	Dual	Cout
(VDC)	(µF)	Vout (VDC)	(µF)	Vout (VDC)	(µF)
3.3/5	4.7	3.3/5/6	10	±5	4.7
12	2.2	7.2/9	4.7	±9	2.2
15	2.2	12	2.2	±12	1
24	1	15	1	±15	0.47
-	-	24	1	±24	0.47

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

4) Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear regulator and an capacitor filtering network with overheat protection that is connected to the input or output end in series (Figure 3), the recommended capacitance of its filter capacitor sees (Table 1), linear regulator based on the actual voltage and current to reasonable selection.

5) No parallel connection or plug and play

Note:

- 1. Operation under minimum load will not damage the converter; However, they may not meet all specification listed, and that will reduce the life of product.
- 2. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 3. In this datasheet, all the test methods of indications are based on corporate standards.
- 4. Only typical models listed, other models may be different, please contact our technical person for more details.
- 5. Our company offer custom products.
- 6. Specifications subject to change without notice.

MORNSUN Science & Technology Co.,Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R.China.

Tel: 86-20-28203030

Fax:86-20-38601272

Http://www.mornsun-power.com