MULTIMETRY CYFROWE
 M 830
 M 830 BUZ
 M 838

INSTRUKCJA OBSŁUGI

Instrukcja obsługi dostarcza informacji dotyczących parametrów technicznych, sposobu użytkowania oraz bezpieczeństwa pracy.

1. WPROWADZENIE:

Mierniki umożliwiają następujące rodzaje pomiarów:
\Rightarrow pomiary napięcia stałego (DC),
\Rightarrow pomiary napięcia przemiennego (AC),
\Rightarrow pomiary natężenia prądu stałego (DC),
\Rightarrow pomiar rezystancji,
\Rightarrow pomiary hFE tranzystorów;
\Rightarrow pomiary napięcia przewodzenia diod,
\Rightarrow pomiar temperatury (M838).
\Rightarrow kontrola ciągłości obwodu (M830 BUZ i M838),

2. DANE TECHNICZNE:

Wskaźnik	wyświetlacz krystaliczny $(31 / 2$ cyfry) o wym. $16 \times 48 \mathrm{~mm}$.
Maksymalne wartości napięcia	
mierzonego	1000 V DC,750V AC (wartość skuteczna)
llość odczytów	$2 . . .3$ odczyty na sekundę.
Zakres temperatur pracy	$0 . . .40^{\circ} \mathrm{C}$.
Zasilanie	bateria 9V 6F22.
Pobór prądu	ok. 5 mA.
Funkcje dodatkowe:	

[^0]\Rightarrow sygnalizacja polaryzacji przy pomiarach prądu i napięcia stałego ,
\Rightarrow sygnalizacja dźwiękowa ciągłości obwodu (M830 BUZ i M838) ,
Dokładność: $\pm(\%$ odczytu + liczba cyfr);gwarantowana dla temperatury pracy $23 \pm 5^{\circ} \mathrm{C}$ i wilgotności względnej powietrza mniejszej od 75%.

2.1. POMIAR NAPIECCIA STAŁEGO (DC):

ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
200 mV	$\pm 0.25 \% \pm 2$ cyfry	$100 \mu \mathrm{~V}$
2000 mV	$\pm 0.5 \% \pm 2$ cyfry	1 mV
20 V	$\pm 0.5 \% \pm 2$ cyfry	10 mV
200 V	$\pm 0.5 \% \pm 2$ cyfry	100 mV
1000 V	$\pm 0.5 \% \pm 2$ cyfry	1 V

Impedancja wejściowa: $10 \mathrm{M} \Omega$ na wszystkich zakresach.
Ochrona przed przeciążeniem : 1000V napięcia stałego lub zmiennego (impuls) na wszystkich zakresach z wyjątkiem zakresu 200 mV, na którym dopuszczalne napięcie wynosi 200 V .

2.2. POMIAR NAPIECIA PRZEMIENNEGO (AC):

ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
200 V	$\pm 1.2 \% \pm 10 \mathrm{cyfr}$	100 mV
750 V	$\pm 1.2 \% \pm 10 \mathrm{cyfr}$	1 V

Impedancja wejściowa: $10 \mathrm{M} \Omega$ na wszystkich zakresach.
Ochrona przed przeciążeniem : 1000V napięcia stałego lub zmiennego (impuls) na wszystkich zakresach z wyjątkiem zakresu 200 mV , na którym dopuszczalne napięcie wynosi 250 V .

Zakres częstotliwości napięć
mierzonych:
45...450Hz przy napięciu maksymalnym 200V.

2.3. POMIAR NATĘŻENIA PRĄDU STAŁEGO (DC):

ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
$2000 \mu \mathrm{~A}$	$\pm 0.8 \% \pm 1 \mathrm{cyfra}$	$1.0 \mu \mathrm{~A}$
20 mA	$\pm 0.8 \% \pm 1 \mathrm{cyfra}$	$10 \mu \mathrm{~A}$
200 mA	$\pm 1.2 \% \pm 1 \mathrm{cyfra}$	$100 \mu \mathrm{~A}$
10 A	$\pm 2.0 \% \pm 1 \mathrm{cyfra}$	10 mA

Ochrona przed przeciążeniem: bezpiecznik $0.2 \mathrm{~A} / 250 \mathrm{~V}$ dla wszystkich zakresów, z wyjątkiem zakresu 10A, który nie jest chroniony; maksymalny czas pomiaru wynosi 10 sekund.
2.4. POMIAR REZYSTANCJI:

ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
200Ω	$\pm 0.8 \% \pm 2$ cyfry	0.1Ω
2000Ω	$\pm 0.8 \% \pm 2$ cyfry	1Ω
$20 \mathrm{k} \Omega$	$\pm 0.8 \% \pm 2$ cyfry	10Ω
$200 \mathrm{k} \Omega$	$\pm 0.8 \% \pm 2$ cyfry	100Ω
$2000 \mathrm{k} \Omega$	$\pm 1.0 \% \pm 2$ cyfry	$1 \mathrm{k} \Omega$

Ochrona przed przeciążeniem: 220 V (wartość skuteczna) na wszystkich zakresach przez 10 sekund.
Napięcie otwartego obwodu: $\quad 2.8 \mathrm{~V}$.
2.5 POMIAR TEMPERATURY (M 838)

ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
$-40 \ldots+1000^{\circ} \mathrm{C}$	$\pm 0.75 \% \pm 3$ cyfry	$1.0^{\circ} \mathrm{C}$

3. OBSŁUGA.

3.1 CZYNNOŚCI WSTĘPNE.

1. Przed pomiarem należy się upewnić, że wartości napięć i prądów nie przekroczą wartości dopuszczalnych dla poszczególnych zakresów pomiarowych.
2. Przed wykonaniem pomiaru przełącznik funkcji powinien być ustawiony w pozycji właściwej dla danej wielkości mierzonej i na właściwym zakresie pomiarowym.
3. Jeżeli wartość mierzonego napięcia lub prądu nie jest znana przed pomiarem, należy przełącznik funkcji ustawić na najwyższym zakresie pomiarowym i w razie potrzeby stopniowo go obniżać.
4. Cyfra „1" na wyświetlaczu oznacza przekroczenie nastawionego zakresu pomiarowego , należy więc przełącznik funkcji ustawić na wyższy zakres pomiarowy.

3.2 POMIAR NAPIĘCIA STAŁEGO (DC).

1. Przewód pomiarowy czarny przyłączyć do wejścia „COM", przewód pomiarowy czerwony do wejścia „V $\Omega \mathrm{mA}^{\prime}$.
2. Przełącznik funkcji przełączyć na zakresy w obrębie napięć stałych,, DCV".
3. Przewody pomiarowe przyłączyć do punktów obwodu ,miedzy którymi mierzone jest napięcie.

UWAGA !!!

Stosowanie miernika do pomiaru napięć wyższych niż 1000V DC (impuls), lub 750 V AC (wartość skuteczna), może spowodować trwałe jego
uszkodzenie.

3.3 POMIAR NAPIĘCIA PRZEMIENNEGO (DC)

1. Przewód pomiarowy czarny przyłączyć do wejścia „COM", przewód pomiarowy czerwony do wejścia „V $\Omega \mathrm{mA}$.
2. Przełącznik funkcji przełączyć na zakresy w obrębie napięć przemiennych „ACV"
3. Przewody pomiarowe przyłączyć do punktów obwodu, miedzy, którymi mierzone jest napięcie.

3.4 POMIAR NATĘŻENIA PRĄDU STAŁEGO (DC).

1. Przewód pomiarowy czarny przyłączyć do wejścia „COM" ,czerwony zaś:

- dla prądów w zakresie do 200 mA .-do wejścia „V $\Omega \mathrm{mA}^{\prime}$,
- dla prądów większych od 200 mA - do wejscia „10ADC".

2. Przełącznik funkcji przełączyć na zakresy w obrębie prądów stałych,„DCA", następnie przewody pomiarowe przyłączyć SZEREGOWO do obwodu ,w którym mierzone jest natężenie prądu.

UWAGA !!!

Maksymalna wartość natężenia prądu mierzonego wynosi 200 mA lub 10 A , w zależności od użytego wejścia. Użycie miernika na zakresie 200 mA do pomiaru większych prądów, spowoduje przepalenie bezpiecznika topikowego, który należy wymienić na bezpiecznik o takim samym prądzie znamionowym ($200 \mathrm{~mA} / 250 \mathrm{~V}$).Zakres pomiarowy 10 A nie jest chroniony bezpiecznikiem. Maksymalny czas pomiaru na zakresie pomiarowym 10 A - wynosi 10 sekund.

3.5 POMIAR REZYSTANCJI.

1. Przewód pomiarowy czarny przyłączyć do wejścia „COM", przewód czerwony do wejścia „ $\mathrm{V} \Omega \mathrm{mA}^{\prime \prime}$.(Polaryzacja przewodu czerwonego będzie dodatnia).
2. Przełącznik funkcji przełączyć na zakresy w obrębie pomiaru rezystancji „, $\Omega^{\prime \prime}$, przewody pomiarowe przyłączyć do zacisków mierzonej rezystancji.

UWAGA !!!

Jeżeli wartość mierzonej rezystancji przekracza wartość wynikającą z wybranego zakresu pomiarowego, wyświetlona zostanie cyfra". Należy wówczas wybrać przełącznikiem funkcji większy zakres. Przed pomiarem rezystancji w układzie elektrycznym, należy upewnić się czy zostało odłączone zasilanie i czy kondensatory są całkowicie rozładowane.

3.6 POMIAR TEMPERATURY (M 838).

1. Przełącznik funkcji ustawić w pozycji „TEMP ${ }^{\circ}{ }^{\circ}{ }^{\prime \prime}$.
2. Wtyczki sondy pomiarowej typu K włożyć: -czarną do gniazda „COM",
czerwoną zaś do gniazda „ $\mathrm{V} \Omega \mathrm{mA}{ }^{\prime \prime}$.
3. Miernik bez sondy wskazuje przybliżoną temperaturę otoczenia.

3.7 POMIAR WSPÓŁCZYNNIKA hFE TRANZYSTORÓW.

1. Przełącznik funkcji ustawić w położeniu „hFE".
2. Umieścić końcówki badanego tranzystora w gnieździe „NPN PNP" zgodnie z oznaczeniami.
3. Zostanie wyświetlona przybliżona wartość hFE,dla napięcia Uce $=2.8 \mathrm{~V}$ i przy prądzie bazy $\mathrm{IB}=10 \mu \mathrm{~A}$.

3.8 BADANIE DIOD.

1. Przewód pomiarowy czarny przyłączyć do wejścia „COM", przewód pomiarowy czerwony do wejścia „V $\Omega \mathrm{mA}$ ".
2. Przełącznik funkcji przełączyć w pozycję „, $\Omega^{\prime \prime}$ na zakres pomiarowy 2000Ω.

Przewody pomiarowe przyłączyć do końcówek badanej diody - przewód czarny do anody, przewód czerwony zaś do katody.

Wyświetlona zostanie przybliżona wartość napięcia przewodzenia diody.

3.9 KONTROLA CIĄGŁOŚCI OBWODU (M830 BUZ i M838).

1. Przewód pomiarowy czarny przyłączyć do wejścia „COM", przewód pomiarowy czerwony do wejścia „V $\Omega \mathrm{mA}$ ".
2. Przełącznik funkcji przełączyć w pozycję oznaczoną diodą.
3. Połączyć przewody pomiarowe z punktami obwodu, którego ciągłość jest sprawdzana. Jeżeli rezystancja pomiędzy tymi punktami będzie mniejsza od ok. 30Ω,słyszany będzie dźwięk.

4. OBSŁUGA TECHNICZNA.

4.1 WYMIANA BATERII.

1. Odwrócić miernik wyświetlaczem na dół.
2. Wykręcić wkręty mocujące pokrywę baterii.
3. Wymienić zużytą baterię 6F22 9V na nową.

4.2 WYMIANA BEZPIECZNIKA.

1. Odwrócić miernik wyświetlaczem na dół.
2. Wykręcić wkręty mocujące pokrywę baterii.
3. Wymienić przepalony bezpiecznik na nowy o wartości $200 \mathrm{~mA} / 250 \mathrm{~V}$.

4. Bezpieczeństwo użytkowania

1. Przed pomiarem przeczytaj dokładnie instrukcję obsługi.
2. Upewnij się, że izolacja miernika jest w dobrym stanie i nie posiada uszkodzeń.
3. Ustaw przełącznik funkcji we właściwej pozycji, tak by wartość mierzonego prądu lub napięcia nie przekraczała danego zakresu pomiarowego.
4. Nie przełączaj przełącznika funkcji podczas wykonywania pomiaru.
5. Zachowaj szczególną ostrożność podczas pomiarów przy napięciu wyższym od 60V DC lub 42V AC rms.
6. Stosuj na wymianę wyłącznie bezpieczniki o parametrach: F 0.2A/250V,
7. Wymień baterię gdy wskazania miernika są niewłaściwe lub niepewne.
8. Przechowuj i używaj miernik we właściwej temperaturze oraz wilgotności.
9. Do mycia używaj miękką ściereczkę ze słabym detergentem.

[^0]: \Rightarrow sygnalizacja przekroczenia zakresu pomiarowego (wyświetla cyfrę „1"),

